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Modern materials are complex in their composition and also in the variety of structure, phase state, 
etc. The conventional "classical" methods for calculating the constructionl elements of such composite 
materials (CM) can lead. in some casesi to substantial errors in the basic calculated characteristics. Thus, the 
development of new refining mathematical models and of calculation techniques (mainly numerical) seems 
very urgent, especially for considering the problems on the dynamics of constructions in nonlinear settings of 
boundary-value problems. 

This paper generalizes the statement of the nonlinear model of [1] to the case of thermoelasticity of 
a sandwich-type shell with regard to the interaction between layers with different physical characteristics. A 
version of the advanced calculation model of thermoelastic deformation of sandwich-type CM-shells (including 
those suitable for calculating both smooth and reinforced shells) has been constructed taking into account the 
interactions of layers continuous in tangential forces and the shift vector, the interlayer shifts along the packet 
height as a whole, and also the existence of transient zones between the matrix and the armoring fibers arising 
from production processes. The specificity of a composite structure is reflected in the elasticity coefficients 
of the system, which naturally involve the physical and mechanical characteristics of individual material 
substructures. The problems on the nonlinear thermoelastic deformation of a sandwich-type cylindrical 
composite shell under the action of power and temperature pulses are realized numerically. The obtained 
data are analyzed, and practical recommendations on their use are given. 

The decision _equations of nonlinear bending, stability, and vibrations of sloping sandwich-type 
composite shells were obtained in [1]. However, when it is necessary to consider the thermoelastic statements 
of problems, one should introduce additional components using the Duhamel-Neuman relations generalized 
for the case of thermoelasticity. For the variant of anisotropy with only one plane of elastic symmetry, these 
can be written as follows: 

3 2 
o-k=~"~Akt~l--3Td, ai3=~'Giieja--fTo ( k = 1 , 2 , 3 ,  i = 1 , 2 ) .  (1) 

1=1 j = l  

where the first terms are taken from [1]. In this case, o-a -= o'12, e3 = e12, and the coefficients of the thermal 
effect are of the form 

3 2 

�9 O Y  fit = E AkzaT, f i  T = E G,, ./3, (2) 
l=l j----1 

where ~ = T - To; T is the absolute temperature of the body; To is its initial component; and a T, a T  are 
the coefficients of the thermal expansion of the constructional material [2]. Expressions (1) and (2) can be 
written for each of the shell layers identically, and therefore, the indices referring to the layers are omitted. 

Using (1) and (2) and carrying out a rather cumbersome procedure, similar to [1], to derive the decision 
equations, we obtain a decision system for the thermoelastic deformation of the sandwich-type CM-shells in 
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the generalized shifts: 
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( X mUm +  Imam) -- -- U;  -  -lV 0* +  -2q 3 = 0, 
m = l  

2 Z I I I  r ,  _--1X"71 _a* 
( A m i u m q - A i m a m ) - - J l w - - I ~  i - - e  v iv  q-r =0 .  (3) 

rn=l 
2 

,0 �9 Q6u r Z ( gOmltm q- gmam) - J 3 w  - L 3 - V 3 0 *  - ~ - 2 q  = 0,  = 0 ( i  = 1 , 2 ) .  

r n = l  

In this case, ui,  w are the main shifts on the reference surface; ai are the coordinate and time functions related 
I I I  * * to transverse shifts; Aim, Aim , A i m  , etc. are the differential operators in partial derivatives; U i , K i , and L~ 

are the inertial components; qi3, q03, and q are the parameters of the external surface loading; and Q and 
6u are, respectively, the vectors of generalized forces and variations of the generalized shifts along the F-line 
bounding the reference shell surface. The influence of interlayer shifts and the interaction between the fibers 
and the binder are taken into account. The conditions for their contact in the packet not only upon shifts 
but also by tangential forces are made consistent [3-5]. The terms underlined correspond to the temperature 
components ~* = o~Tt9 (a T is the characteristic coefficient of thermal expansion). The operators Vi, V~, 
and V3 are linear and contain the elastic and thermal (in the general case) components of the transverse 
coordinate. Since the operators involved in (3) are too cumbersome, they are neglected and, if necessary, will 
be written in solving particular problems. Note also that the order of the decision system of equations (3) 
does not depend on the number of layers and their arrangement. 

We use system (3) to study the buckling of the cylindrical composite three-layer shell under periodic 
dynamic actions (force and temperature). To this end, the system of stability equations deduced from (3) will 
be supplemented with both the generalized heat equation and the initial conditions. It is noteworthy that 
when solving problems of stability subject to boundary conditions one must neglect temperature terms [6] 
because they will be taken into account in determining the subcritical state of the shell and the equations of 
supercritical deformation will preserve the form similar to that in [3, 4, 7] irrerspective of the existence of the 
temperature component. 

The resulting complete problem on dynamic thermostability has a fairly complex form and structure. 
Its direct solution is difficult even by numerical methods. Thus, according to the remark in [8] on approaches to 
the solution of such problems, we consider now two steps of their realization. In the first step, it is assumed that 
the change in the thermoelastic deformation along the shell is independent of bending and can be determined 
from the solution of the corresponding one-dimensional problem, as for an elastic rod. In the second step, 
we solve the problem on nonlinear supercritical deformation (buckling) under the action of temperature and 
force factors. In this case, the temperature components will be involved in the system of equations as the 
well-known values determined in the previous step. 

The generalized heat equation for an anisotropic body (the composite material of the shell) will be 
derived from the relation [2] 

T OS 
Ot = --qi,i, (4) 

where q is the heat flux vector and S is the entropy per unit volume. In terms of the Fourier law for an 
anisotropic medium: the vector 

qi = - ,~iyT,  i .  (5) 

Since we are interested in the one-dimensional case of propagation of heat deformations, the right-hand side 
of Eq. (4) reduces to 

ql = -AT,1  (6) 

()~ is the heat conductivity in the longitudinal direction of the shell). The entropy in the anisotropic case is 
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of the form 

S =/3ijeij + (C~p/To)O. (7) 

Here Ce is the specific heat at constant strain; p is the material density;/3ij are the material constants related 
to the mechanical and thermal properties of the material, which are determined below; and eij is the strain 
tensor. The first term in (7) for entropy characterizes the'conjugation of the deformation field with temperature 
and the second one is typical of the entropy caused by heat conductivity. Substituting (7) into (4) and taking 
into account (6), we obtain 

To/~ijeij + CepO .X 020 = (s)  
lox i 

(Xl is the longitudinal cylindrical coordinate). Taking into account the one-dimensionality of this case and 
the expression for strains in terms of shifts according to [1] we convolve the first term in (8). As a result, 
relation (8) in terms of dimensionless variables will take the form 

lo0* 020 * fl lo2ul 
A - ~ - (  2 "~- "-IOTIO~I ---- 0, (9) Or 

where 0* = aTo; r =ct /L;  c = ~f-~/p; A = AL/R2Cspc; t is the dimensional time; fl = r 
(1 = xl /R;  L, R are the length and mean radius of the cylindrical surface of the shell; E0 is the elasticity 
modulus of the isotropic binder of the material; p is the mean density of the shell material; ul is the 
displacement of the points of the middle surface toward the element, normalized by the overall thickness 
of the shell; e = H/R: and A~I is the elastic CM modulus along the element [1]. Equation (9) differs from 
the conventional heat equation by its additional term related to work of deformation, i.e., we have a so-called 
bound or generalized heat equation, which should be considered together with the equation of motion (3) at 
i = 1. Reducing it to dimensionless form and using the above designations, we obtain 

lo2Ul -1 lo0* ..  lo2U 1 
lo l e lo , (10) 

(K = R2/L2A~1). Equations (9) and (10) form a complete system of differential equations of the bound 
thermoelasticity of a composite cylindrical shell in a one-dimensional variant. The boundary and initial 
conditions for the case under study are of the form 

lo0* L lou 
lo(1 = Ul ---= 0 at (1 ---- 0, ~ ,  10T Ul 0 at r 0, 0* 05 at r = 0, (1 ---- 0. (11) 

The last condition in (11) corresponds to the application of a heat pulse 0~ to one of the shell faces at 
the initial moment,  i.e., dramatic local heating of the remaining heat-insulated surface [8]. Solving the main 
problem on the buckling of a composite sandwich-type shell, one should introduce the temperature effect 
component into the decision system of stability equations [7] according to the formula 

[ 0Ul ) 
TO(T,(1)---- A~I ~ - - 1  - 0 "  . (12) 

In this case, 0ul/0(1, O* can be found by solving the problem (9)-(11). 
Note that when the heat sources vary slowly with time the inertial component  in Eq. (10) can be 

neglected. Hence 

0 r loUl l 0 a  - = 0. (13) 

System (9), (11), (13) now forms a so-called quasistatic thermoelasticity problem. Equation (13) can readily 
be integrated for the boundary conditions ul (0, r) = ul(L/R,  r) = 0. As a result, T~ can be written in the 
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explicit tbrm 

L/R 

TO(r ) = _ A N T ,  R / 0(~', ~1) d~l, (14) 
0 

where the function ~9(r, ~a) is determined by solving the problem (9) and (11) on generalized heat conductivity. 
This is especially evident when passing to a new time variable ~'1 = Ar in (9) and (10). Hence, Eq. (10) takes 
the form 

02Ul --1 00" 02Ul 
- ~ K A 2 ~ - - - ~  = 0 .  (10a) 

0~ o f f  

For actual materials the coefficient KA 2 for the second t ime derivative is so small that  the last term in (10a) 
can be neglected compared to the remaining. We again arrive at(13).  

Thus, the problem solved in the first step reduces to the integration of the system of equations (9) 
and (10) subject to the initial boundary' conditions (11). 

As mentioned above, the problem on thermoelastic buckling with boundary conditions will contain no 
heat additives because the latter have already been taken into account in solving the problem in the first step. 
In this case, the form of the stability equations given in [3, 4, 7] is preserved, preserve their form and only 
changes due to the existence of the temperature component must be introduced. Solving again the initial set 
of stability equations proposed in [3, 4] and performing cumbersome transformations, we obtain a nonlinear 
system of ordinary differential equations for the dimensionless amplitude values (1 and (2 (referred to the full 
coating thickness H): 

1 d2~l T~ aot,) al(l(2 + a2~l~ 2 + a3( 3 = 0, 
dt'--~', + (1(1 + - - (15) 

66-1 d2(2 2aolT ~ ast,) a6(22 -- aT(l 2 + a8(2Ci 2 + a9C23 0. 
S d t ]  + r  + - - = 

In this case all the values are dimensionless and a0, a01, . . . ,  a9 are the coefficients containing the physical 
and geometrical parameters of the shell: 

ao = Ao/Acr, a01 = rleMox/n2M, al = e(M3 "Jr M1/2)/M, a2 = (m53MOl q- eM4)/M, 

2~12t~ a6 = M66Mol/M, a7 = M2/M, a3 = (~'/32)m52Mol/M, a4 = Mo6Mol/M, a5 = 

as = (e2/4)[M5 + (A~a~ 4 + 3A~2~12)Mol]/M, a9 = ie2/4)A~l~4Mo~/M, A ,  = n2M/(t~ 2 + t~ 

(16) 

(the components of these coefficients have a fairly cumbersome structure and thus are omitted; Ms, M01, 
M, etc. are the determinants of the kinematic matrix-operator using the Bubnov-Galerkin procedure [3, 4]); 
t ,  = A/A0; A = sxt/Eo is the dimensionless parameter of the force loading; sl is the increase in the velocity 
of loading; t is the dimensional time; Ao is the minimal upper critical loading parameter,  obtained from the 
static linear problem; t o , t o are the dimensionless parameters of the external force action in the axial and 
lateral directions, respectively; ~ = m~rR/nL (m, n being the integers of wave formation in the longitudinal 
and circumferential directions); and S = (cEo/slR)2n4A2M/Mol. 

In the quasistatic loading of the shell by external forces, the inertial terms in Eqs. (15) must be assumed 
zero. Hence 

aoA//\o = l + T ~  +a3(  2, ab~/~o =a4 + 2 a o l T ~  +a9~ .  (17) 

Expressing ~2 from the second equation of (17) in terms of (1 and taking into account only the first 
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TABLE 1 

Layer 
No. 

0, 0, 
f~o/2, f~o/2 

O, ~o, 
0,0 

12o, O, 
0,0 

Variant 
2 I " 3 I 4 I 5 

Rigid characteristics of layers in four directions 

~o,0, 
0,0 

0,0, 
no/2, f~o/2 

O, flo, 
0,0 

f~o, O, 
0,0 

0,~o, 
0,0 

O,O, 
no/2, ao/2 

O,f~o, 
0,0 

f~o,O, 
O, 0 

0,0, 
12o/2, f~o/2 

0, 0, 
~o/2,9o[2 

0,0,  
S2o/2, f~o/2 

~o,0, 
0,0 

I 6 

0, 0, 
no/2, ~o/2 

0,0, 
f~o12, ~0/2 

0,0, 
no/2, f~0/2 

power of (2, we get the dependence A/A0 = f((1) in the form 

A alaT( 2 a2a~( 4 
ao-~o = 1 + T~ q- q-a3r 2. (18) 

a4 h- as(12 (a4 q- a8(12) 2 

Relation (18) describes the postcritical behavior of the shell for different wave numbers m and n and for 
given physical and geometrical parameters. Constructing the curves f((1), we determine the so-called "lower" 
critical load and the corresponding branch of the supercritical shell strain. 

In solving many problems on dynamic instability [8] the value of (2 determined from (17) has been 
used for system (15). In this case we get one equation for (1: 

, 1 d2(1 T~ aot.) ala7(3 
dt-~, all- r "~ -- a4 -~" a8(2 21- 

( the  initial conditions are given for (1 only). 

a2a (  
(a4 q- a8(12) 2 

+a3(~  = 0  (19) 

Thus, in the second step of solution of the problem on thermostability, we have system (15) [or only 
Eq. (19)] with initial conditions for (1, (2, and r ~:2 (or (1, (1) at t .  = 0 and hence the problem on shell 
buckling under dynamic, temperature, and force loadings is formulated. 

In studying the process of buckling we assume that the shell becomes unstable when the amplitude 
of maximum deflection dramatically increases with increasing t.  for the near-ordinate values of n (parameter 
77 is fixed). It is also believed that the critical dynamic loading is achieved if the arrow of maximum deflection 
is assumed to exceed the static deflection corresponding to the highest value of the external action [8]. Some 
authors (see, e.g., [9]) consider the loading critical if the stress intensity reaches the limit of proportionality. 
All these criteria are conditional, display no universal character, and refer to specific shells with definite 
mechanical and geometrical parameters. Therefore, in this case, as a criterion for instability, we take the 
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former as the most obvious, at which the so-called "skipping" of the shell occurs and further dynamic loading 
quickly leads to exhaustion of its carrying ability. 

Solving the problem on the dynamic thermoelastic behavior of a three-layer composit e shell.for system 
(15) [or in other cases for Eq. (19)] with the initial conditions r = (2 = 0.001 and ~1 = ~2 = 0 (or 
r = 0.001, r = 0) with t ,  = 0, we used Gear's scheme [10] dealing with the so-called "rigid" equation in 
which the coefficients differ from one another by orders of magnitude. System (9), (10) for the initial boundary 
conditions (11) was integrated by the finite-difference method.  In cases allowing certain simplifications, we 
used relation (14). In the calculations the structure of a sandwich-type shell obeys the condition [3] 

3 

~_, hos12Os = rio, (20) 
s = l  

where hos = h s / H ;  12o~ = w(S)E/Eo;  12o = coE/Eo;  w (s) = E is the volume content of reinforcing 
k = l  

elements in the sth layer; and co is the total volume content of reinforcement in the shell packet. Condition (20) 
makes it possible to vary the structural parameters in the layers to choose the best design of a three-layer shell 
for the given external pulses of force and temperature action. Thus, Fig. 1 shows the characteristic dependences 
~l(t,) under the action of the temperature pulse 0~ = 0.3 for different rigid parameters in the layers (variant 
3 in Table 1 giving the reinforcing intensities in four directions), for relative thicknesses h01 = h02 = 0.25, 
h03 = 0.5, and for different numbers of circumferential wave formation n (f~0 = 96, X (3) = 0). It is obvious 
that the behavior of the shell is characterized by increase in the dynamic coefficient t ,  with increasing n and 
decreasing amplitude of skipping r upon transition to a new state. In this case, for n = 4 the "skipping" 
process starts earlier than for other values. 

Simultaneously, as an intermediate result, the dimensionless Ul(T) and T~ were calculated in the 
middle of the three-layer composite shell (~1 = L / 2 R )  to obtain a pattern of perturbation wave propagation 
with time. T~ was also determined from formula (14). The data obtained were put in the basic equation (19) 
of dynamic instability. The calculated results indicate that  the ~1 (t,) dependences essentially coincided with 
the introduction of parameter  T*( r )  calculated by the approximate and exact formulas. The only difference 
was a negligible decrease in the vibration amplitude after "skipping'of the shell, and the beginning of transition 
of the shell to another state coincided completely. 

A similar pat tern of the behavior of the dependence ffl(t,) was also observed for the other reinforcing 
variants and therefore in Figs. 2--4 n = 4 was assumed and the other parameters were varied. In particular, 
under the joint action of the temperature pulse and of the force pulse of intensity sl = 98.107 Pa/sec, Fig. 2 
(reinforcing variant 4, see Table 1) shows the dependences ffl(t,) with varying X (3) angle of the directional 
packing of reinforcing elements in the middle layer. Evidently, the largest dynamic coefficient (parameter t , )  
will be observed with X (3) = 0.57r. A similar structure with X(3) = 0.47r provides the largest static critical 
loading obtained by linear theory [1]. Comparing the curves for k (3) = 0.17r and X (3) = 0.5% we see that, 
varying the angle of the directional packing of reinforcing elements, we can substantially increase the dynamic 
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coefficient with the other parameters being constant (reinforcing intensities and their ratios in layers). Of 
great interest s the results given in Fig. 3. In this case, instead of the positive ttlermal pulse, a negative 
thermal pulse is applied accompanied by the action of a force pulse of the same intensity as shown in Fig. 2. 
As a result, the reverse effect is observed, i.e., the largest dynamic coefficient is recorded for X (3) = 0, and the 
smallest one, for X(3) = 0.47. This calculation variant resembles the effect of "weak" rigidity under the action 
of only force dynamic loading of the shell [3, 7], i.e., the less rigid the shell in the circumferential direction 
(variant 4, see Table 1). the higher its dynamic coefficient. 

Figure 4 gives the values of (1 (t.) for a given angle of the directional packing of reinforcing elements in 
the layers X = 0.4~" of the parameter n = 4, at which in most cases the first dramatic increase of deflections 
begins, and for different reinforcing schemes in Table 1 (the figures near the lines correspond to the variants 
in Table 1) as the shell is loaded simultaneously with positive thermal and force pulses. It is evident that 
a more rational scheme in this case is variant 3, which is the best in static loading [1] and also under the 
action of only force dynamic loading [7]. Recall that the dynamic coefficient is determined as the ratio of the 
current loading to the corresponding static value obtained by linear theory [8]. Although rather relative, the 
characteristic fairly adequately reflects the behavior of the sandwich-type CM-shell in absolute values, i.e., 
upon transition to dimensional values. 

As was mentioned in [11]. a "weak point" in the dynamic description of the behavior of shells is 
generally the fact that solutions are sought for particular projects rather than for the whole class. However, 
in practice, the calculation is always performed for particular constructional elements and for given types 
of loading. Thus, the so-called "weak point" is justified by obtaining reliable results for the given criteria of 
stability. One need not strive for generalizations, which in each specific case must be verified by particular 
projects. 

Finally, note that the results obtained illustrate the approach developed for determining the dynamic 
characteristics of CM-shells of sandwich-type structure in different thermoforce loading regimes using the 
geometrically nonlinear theory of bending. For a more complex rheology, one should only introduce changes 
in the determinants of the kinematic matrix operators Mos and make use of the approach proposed for solving 
the dynamic problem on nonlinear deformation. In this regard, the above examples illustrate the efficiency of 
the application of the precise model proposed in this work. At the same time, it can be employed for a wider 
class of thin-walled constructions used in different areas. 

R E F E R E N C E S  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

. 

V. I. Samsonov. "Dynamic stability of sandwich-type shells of composite materials," in: Numerical 
Methods of Solving Problems in Elasticity and Plasticity Theory: Proc. IXth All-Union Conference, 
Saratov, June 26-30, 1985, Novosibirsk (1986), pp. 262-272. 
V. Novatskii, Dynamic Problems of Thermoelasticity.[Russian translation], Mir, Moscow (1970). 
Yu. V. Nemirovskii and V. I. Samsonos, "Stability of sandwich-type composite shells unedr dynamic 
loading," in: Stability in the Mechanics of a Deformed Soli& Proc. 2nd All-Union Symposium, Kalinin 
(1986), pp. 138-143. 
V. I. Samsonov, "Buckling of composite cylindrical shells under dynamic loading," in: Studies using 
Theory of Plates and Shells, Kazan University, Kazan (1992), pp 121-129. 
Yu. V. Nemirovskii and V. I. Samsonov, "Dynamic stability of a three-layer composite shells," in: 
Problems of Desoning Construction: Proc. 1st Ural Seminar, Mias, 70-79 (1988). 
P. M. Ogibalov and V. F. Gribanov, Thermostability of Plates and Shells, Moscow University, Moscow 
(1968). 
V. I. Samsonov and E. M. Khakimov, "Influence of the pulse shape on the stability of three-layered 
composite cylinders," in: Numerical Methods of Solving Problems in Elasticity and Plasticity Theory: 
Proc. Xth All-Union Conference, Krasnoyarsk, February 23-27, 1987, Novosibirsk, 251-257 (1988). 
A. S. Vol'mir, Nonlinear Dynamics of Plates and Shells, Nauka, Moscow (1972). 

787 



9. 

10. 

11. 

12. 

A. E. Bogdanovich, Nonlinear Problems on the Dynamics of Cylindrical Composite Shells," Zinatne, 
Riga (1987). 
C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, 
Englewood Cliffs (1971). 
A. V. Karmishina (Ed.), Methods of Dynamic Calculations and Tests of Thin-Walled Constructions, 
Mashinostroenie, Moscow (1990). 
Yu. V. Nemirovskii and V. I. Samsonov, "Stability, rigidity, and optimal design of constructions under 
static and dynamic actions," Preprint No. 17-92, Institute of Theoretical and Applied Mechanics, 
Siberian Division of the Russian Academy of Science, Novosibirsk (1992). 

788 


